Search results for " ischemia"

showing 10 items of 466 documents

Role of Regular Physical Activity in Neuroprotection against Acute Ischemia

2020

One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function followi…

0301 basic medicineAngiogenesismyokinesphysical activityReviewneurotrophinsAntioxidantsBrain Ischemialcsh:Chemistry0302 clinical medicineNeurotrophic factorsneuronal recoverylcsh:QH301-705.5SpectroscopybiologyGeneral MedicineNeuroprotectionComputer Science ApplicationsAcute DiseaseNeurotrophinmedicine.symptomNeurotrophinTraumatic brain injuryIschemiaInflammationNeuroprotectionCatalysisInorganic Chemistry03 medical and health sciencesHormesisMyokineMyokinemedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryExerciseMolecular Biologybusiness.industryOrganic Chemistrymedicine.disease030104 developmental biologylcsh:Biology (General)lcsh:QD1-999inflammationbiology.proteinBrain-derived neurotrophic factor (BDNF)businessNeuroscience030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects

2017

Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and re…

0301 basic medicineAntioxidantRedox signalingmedicine.medical_treatmentCellular differentiationClinical BiochemistryReview Article030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeBiochemistrychemistry.chemical_compound0302 clinical medicineGene Regulatory Networks610 Medicine & healthlcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920Anticholesteremic AgentsReactive Nitrogen Speciesmedicine.symptomlcsh:Medicine (General)Oxidation-ReductionPeroxynitriteSignal Transductionmedicine.medical_specialtyCell signalingAntioxidant therapy610 Medicine & healthNitric oxide03 medical and health sciencesPeripheral Arterial DiseasemedicineHumansExerciseReactive oxygen speciesbusiness.industryOrganic ChemistryClaudication and critical limb ischemiaWalking distanceIntermittent claudicationSurgeryOxidative Stress030104 developmental biologychemistrylcsh:Biology (General)Peripheral artery (occlusive) diseasebusinessReactive Oxygen SpeciesOxidative stressRedox Biology
researchProduct

Guanxin Danshen Formulation Protects against Myocardial Ischemia Reperfusion Injury-Induced Left Ventricular Remodeling by Upregulating Estrogen Rece…

2017

Background: Guanxin Danshen formulation (GXDSF) is a traditional Chinese herbal recipe recorded in the Chinese Pharmacopoeia since 1995 edition, which consists of Salviae miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma and Dalbergiae odoriferae Lignum. Our previous research suggested GXDSF had positive effect on cardiovascular disease. Therefore, the aim of this study was to elucidate the effects of GXDSF on myocardial ischemia reperfusion injury-induced left ventricular remodelling (MIRI-LVR). Methods: The effects of GXDSF on cardiac function were detected by haemodynamics and echocardiograms. The effects of GXDSF on biochemical parameters (AST, LDH and CK-MB) were analysed. H…

0301 basic medicineCardiac function curvemedicine.medical_specialtyGuanxin Danshen formulaEstrogen receptor030204 cardiovascular system & hematologyPharmacologyventricular remodeling03 medical and health sciences0302 clinical medicineFibrosisInternal medicinemedicinenetwork pharmacologyPharmacology (medical)Ventricular remodelingOriginal ResearchPharmacologyPI3K/AktEjection fractionbusiness.industryestrogen receptor βlcsh:RM1-950PHTPPmedicine.diseasemyocardial ischemia reperfusion injury030104 developmental biologylcsh:Therapeutics. PharmacologyCardiologyMyocardial fibrosisbusinessReperfusion injuryFrontiers in Pharmacology
researchProduct

Cardioprotection and natural polyphenols: An update of clinical and experimental studies

2018

Myocardial ischemia is the leading cause of death worldwide. Despite better outcomes with early coronary artery reperfusion strategies, morbidity and mortality remain significant. The principal myocardial hallmark of myocardial ischemia is cell death and the associated impairment of cardiac contractility. In this way, the use of extracts from medicinal plants versus synthetic drugs to mitigate post-ischemic damage constitutes an alternative. Despite their proven beneficial effects in cardiovascular disorders, the use of many plants is questioned. Our aim is to update the clinical and experimental studies about the actions of medicinal plants and polyphenol-enriched extracts against ischemia…

0301 basic medicineCardiotonic AgentsMyocardial ischemiaCIENCIAS MÉDICAS Y DE LA SALUDMyocardial IschemiaMEDLINE030204 cardiovascular system & hematologyFisiologíaNATURAL PRODUCTS03 medical and health sciencesISCHEMIA-REPERFUSIONCARDIOPROTECTION0302 clinical medicineWeb of knowledgeMITOCHONDRIAAnimalsHumansMedicineCardioprotective AgentMedicinal plantsBeneficial effectsCause of deathCardioprotectionClinical Trials as TopicTraditional medicinePlant Extractsbusiness.industryPolyphenolsfood and beveragesGeneral MedicineMedicina Básica030104 developmental biologybusinessFood Science
researchProduct

Prevention of an increase in cortical ligand binding to AMPA receptors may represent a novel mechanism of endogenous brain protection by G-CSF after …

2016

PURPOSE Using G-CSF deficient mice we recently demonstrated neuroprotective properties of endogenous G-CSF after ischemic stroke. The present follow-up study was designed to check, whether specific alterations in ligand binding densities of excitatory glutamate or inhibitory GABAA receptors may participate in this effect. METHODS Three groups of female mice were subjected to 45 minutes of MCAO: wildtype, G-CSF deficient and G-CSF deficient mice substituted with G-CSF. Infarct volumes were determined after 24 hours and quantitative in vitro receptor autoradiography was performed using [3H]MK-801, [3H]AMPA and [3H]muscimol for labeling of NMDA, AMPA and GABAA receptors, respectively. Ligand b…

0301 basic medicineExcitotoxicityAMPA receptorPharmacologymedicine.disease_causeReceptors N-Methyl-D-AspartateNeuroprotectionBrain IschemiaMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDevelopmental NeuroscienceGranulocyte Colony-Stimulating FactormedicineAnimalsReceptors AMPAReceptorGABAA receptorGlutamate receptorReceptors GABA-ANeuroprotectionStroke030104 developmental biologynervous systemNeurologyMuscimolchemistryAutoradiographyNMDA receptorFemaleNeurology (clinical)030217 neurology & neurosurgeryRestorative Neurology and Neuroscience
researchProduct

Molecular Biology of Atherosclerotic Ischemic Strokes

2020

Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people w…

0301 basic medicineInflammasomesCerebral arteriesmicrogliaDiseaseReviewneuroinflammationBrain ischemialcsh:Chemistry0302 clinical medicineatherosclerosiStrokelcsh:QH301-705.5SpectroscopymicroRNAGeneral MedicineMKEYDKK-3Computer Science ApplicationsmicroRNAsBlood-Brain BarrierCardiologymedicine.symptomDectin-1medicine.medical_specialtyIschemiaBrain damageCatalysisInorganic Chemistry03 medical and health sciencesInternal medicineDiabetes mellitusmedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic ChemistryAFmedicine.diseaseImmunity InnateNLRP3 inflammasome030104 developmental biologylcsh:Biology (General)lcsh:QD1-999atherosclerosisbusinessBBB030217 neurology & neurosurgeryDyslipidemiaCD200-CD200R
researchProduct

Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke

2018

Abstract Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after…

0301 basic medicineMAPK/ERK pathwayMalePotassium ChannelsSignaling pathwaysmedicine.drug_classMAP Kinase Signaling SystemAcute ischemic strokeDown-RegulationApoptosisBrain damagePharmacologyBiochemistryNeuroprotectionBrain Ischemia03 medical and health sciencesPhosphatidylinositol 3-Kinases0302 clinical medicineEndocrinologyAtrial natriuretic peptideNatriuretic peptideMedicineAnimalsDNA CleavageRats WistarReceptorAtrial natriuretic peptideMolecular BiologyProtein kinase BPI3K/AKT/mTOR pathwayInjections Intraventricularbusiness.industryCaspase 3Natriuretic peptide receptorsBrainInfarction Middle Cerebral ArteryStroke030104 developmental biologyNeuroprotective AgentsReperfusion InjuryK+ channelsmedicine.symptombusinessProto-Oncogene Proteins c-aktReceptors Atrial Natriuretic Factor030217 neurology & neurosurgeryAtrial Natriuretic Factorhormones hormone substitutes and hormone antagonists
researchProduct

Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury.

2020

Objective: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Esch…

0301 basic medicineMaleExtracellular TrapsMesenteric infarctionLipopolysaccharideNeutrophilsGut floraExtracellular Traps03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAcute mesenteric ischemiaVenulesmedicineCell AdhesionEscherichia coliLeukocytesAnimalsGerm-Free LifeLeukocyte RollingMesenteryCells CulturedMice Knockoutbiologybusiness.industryNeutrophil extracellular trapsbiology.organism_classificationmedicine.diseaseGastrointestinal MicrobiomeMice Inbred C57BLToll-Like Receptor 4Disease Models Animal030104 developmental biologychemistryNeutrophil Infiltration030220 oncology & carcinogenesisMesenteric IschemiaReperfusion InjuryImmunologyHost-Pathogen InteractionsFemaleCardiology and Cardiovascular MedicinebusinessReperfusion injuryBacillus subtilisSignal TransductionArteriosclerosis, thrombosis, and vascular biology
researchProduct

Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation

2018

Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic …

0301 basic medicineMalePathologyMacroglial CellsSodium ChlorideVascular MedicineBrain IschemiaMice0302 clinical medicineCytosolAnimal CellsMedicine and Health SciencesMedicineEndothelial dysfunctionStrokeNeuronsCerebral CortexCerebral IschemiaMultidisciplinaryQRPathophysiologyStrokeChemistryNeurologyPhysical SciencesImmunohistochemistryMedicineCellular Structures and OrganellesCellular TypesIntracellularResearch Articlemedicine.medical_specialtyScienceCerebrovascular DiseasesGlial Cells03 medical and health sciencesImmune systemIn vivoParenchymaAnimalscardiovascular diseasesVesiclesSodium Chloride DietaryMicroglial CellsNutritionIschemic StrokeOrganellesbusiness.industryChemical CompoundsBiology and Life SciencesCell Biologymedicine.diseaseDiet030104 developmental biologyCellular NeuroscienceAstrocytesBrain InjuriesSaltsbusiness030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

Emergent Uric Acid Treatment is Synergistic with Mechanical Recanalization in Improving Stroke Outcomes in Male and Female Rats.

2018

Preclinical and clinical studies support a promising, albeit not definitive, neuroprotective effect of emergent uric acid (UA) administration in ischemic stroke. We assessed the effects of UA in an ischemic stroke model relevant to the current treatment paradigm of mechanical thrombectomy within the STAIR/RIGOR recommendations. A cohort of male and female Wistar rats was subjected to ischemic stroke with mechanical recanalization under physiological monitoring. The effects of transient middle cerebral artery occlusion (tMCAO) with adjunctive UA (IV, 16 mg/kg) or vehicle treatment were assessed at 24 h and 7 days. Outcomes included neurofunctional impairment, brain infarct (TTC staining, MRI…

0301 basic medicineMalemedicine.medical_specialtyMechanical ThrombolysisBrain damageNeuroprotectionBrain Ischemia03 medical and health sciencesCresyl violetchemistry.chemical_compoundRandom Allocation0302 clinical medicineuric acidInternal medicineEdemamedicineischemic strokeAnimalsRats WistarStrokebusiness.industryGeneral Neurosciencerat modeladjunctive treatmentBrainRecovery of Functionmedicine.diseaseCombined Modality TherapyUric AcidStrokeDisease Models Animal030104 developmental biologyNeuroprotective AgentschemistrythrombectomyAdjunctive treatmentIschemic strokeCardiologyUric acidneuroprotectionFemalemedicine.symptombusiness030217 neurology & neurosurgeryNeuroscience
researchProduct